North Maharashtra University, Jalgaon

'A' Grade NAAC Re-Accredited (3rd Cycle)

Structure of syllabus

B. Sc. [Biotechnology] F. Y. B. Sc.

Choice Based Credit System (CBCS)

[2018 - 19]

F. Y. B. Sc. Biotechnology (CBCS pattern)

Prologue

The 21st Century is recognized as the Century of Biotechnology. Biotechnology is established as an advanced interdisciplinary applied science in last few years. Biotechnology has pervaded in almost every arena touching practically every human activity. The applied aspect of Biotechnology is now getting established with its applications in Industry, Agriculture, Health and Environment. Biotechnology sector in academic, research and industry front is expanding at rapid rate and set to augur the next major revolution in the world. For this, Biotechnology demands a trained, skilled human resource to establish the industry and research sectors. The cumulative demand for trained and skilled workforce in the area of Biotechnology necessitate in depth functional acquaintance of biological science through hands-on training to the students.

Hence, the syllabus orientation should be altered to keep pace with developments in the education and industrial sector. The need of the hour is to design appropriate syllabi that emphasize on teaching of technological as well as the economic aspects of modern biology.

Theory augmented with practical skill sets will support a graduate to benefit the opportunities in the applied fields (research, industry or institutions), without any additional training. Thus, the university/ college itself will be developing the trained and skilled man-power.

B.Sc. program in Biotechnology as one of the core subject is designed to cultivate a scientific attitude and interest towards the modern areas of biotechnology in particular and life science in general so that the students become critical and curious in their outlook. The courses are designed to impart the essential basics in Plant Science, Animal Science, Microbiology Biochemistry, Chemistry and Biotechnology.

Being an interdisciplinary subject, the present syllabus will amalgamate the principles of physical, chemical and biological sciences along with advanced technology. The undergraduate curricula are prepared to impart primarily basic knowledge of the respective subject from all possible angles so that postgraduate syllabus will emphasize more on applied aspect.

The present syllabi is restructured anticipating the future needs of Biotechnology Sector with more emphasis on imparting hands-on skills. The main thrust is laid on making syllabus compatible with developments in academics, research and industrial sectors. The Theory and Practical course in new restructured course will lead to impart skill-set essentials to further Biotechnology Sector. The curriculum aims to impart basic knowledge with more emphasis on its applications to make the students industry ready.

- To acquaint with the concepts in various allied subjects
- To improve students' knowledge
- To help the students to build interdisciplinary approach
- To instill sense of scientific responsibilities and social and environment awareness
- To help students build-up a progressive and successful career

On this premise, Board of Studies in Life Sciences in its meeting held on 23/06/2018 resolved to accept the revised syllabus for F.Y.B.Sc. (Biotechnology) based on Choice Based Credit System (CBCS) of UGC guidelines.

			First	Year			Secon	d Year			Third	l Year		Total
		Seme	ster I	Seme	ster II	Seme	ster III	Seme	ster IV	Seme	ster V	Seme	ster VI	Credit value
1	Core courses (16)	Credits each	Courses	Credits each	Courses	Credits each	Courses	Credits each	Courses	Credits each	Courses	Credits each	Courses	
	(i) Theory	4	4	4	4	4	3	4	3					4 X 14=56
	(ii) Practical	2	4	2	4	2	3	2	3					2 X 14=28
2	Ability enhancement compulsory course (AECC) (2)	2	1	2	1									2 X 2 =04
3	Skill Enhancement Course (SEC) (4)					2	1	2	1	2	1	2	1	2 X 4 = 16
4	Discipline Specific Elective DSE (6)													
	(i) Theory									4	3	4	3	4 X 6 = 24
	(ii) Practical									2	3	2	3	2 X 6 =12
	Total Credit value (Credit x No. of Courses)	2	26		26		20	2	20		20		20	132

Scheme for B.Sc. program (Faculty of Science and Technology)

Course Structure:

Duration: The duration of B.Sc. (Biotechnology) degree program shall be three years.

Medium of instruction: The medium of instruction for the course shall be English.

The present syllabus has been prepared to (i) accommodate the advanced topic on the Biotechnology discipline, (ii) build the basic science knowledge at the level of first year of Biotechnology and (iii) reflect the changing needs of the students, pertaining to the fields of Chemistry, Bioinformatics and Computational skills. The detailed syllabus for each paper is appended with a list of suggested readings.

At first year of under-graduation, students are given exposure to basic science to build the foundation of advance Biotechnology. For this purpose, more focus on relevant experimentation on the topics are included in practical course. In practical course, students will be trained in preparing laboratory manuals, standard operating practices and log books.

At second year under-graduation, students will be introduced to different areas necessary to form the basis of biotechnology like genetics, immunology, molecular biology, and bioprocess biotechnology. The relevant practicals are included to enrich their knowledge.

At third year under-graduation, six theory and three practical papers each for two semesters are included to uncover all applied areas of Biotechnology.

The courses codes and titles for the courses are as given below: BT: Biotechnology,

Semester	CC - A	Paper	Paper I	Paper	Paper II	Practical	Practical Paper
	and B	code		code		paper code	
Ι	CC A I	BT 101	Cell Biology	BT102	Biochemical Tools	BT103	Practical paper I
II	CC AII	BT 201	Biomolecules	BT 202	Basic Microbiology	BT 203	Practical paper II
III	CC A III	BT 301	Basic Genetics	BT 302	Bioprocess Technology	BT 303	Practical Paper III
IV	CC A IV	BT 401	Molecular Biology	BT 402	Immune response	BT 403	Practical Paper IV

Core Courses [CC] (12 Courses)

Discipline Specific Elective [DSE] (Six each semester)

	DSE	Paper code	Paper I	Paper code	Paper II	Practical paper code	Biotechnology Practical Paper
V	ΑI	BT 501	Advanced Genetics	BT 502	Immunology	BT 503	Practical Paper V
	AII	BT 504	Cell Physiology	BT 505	Cellular Metabolism	BT 506	Practical Paper VI

	A III	BT 507	Microbial	BT 508	Environmental	BT 509	Practical Paper VII
			Biotechnology		Biotechnology		
VI	A IV	BT 601	Plant Biotechnology	BT 602	Animal Biotechnology	BT 603	Practical Paper VIII
	A V	BT 604	Genetic Engineering	BT 605	Molecular Diagnostics	BT 606	Practical Paper IX
	A VI	BT 607	Bioinformatics	BT 608	Enzyme Technology	BT 609	Practical Paper X

More Options to Discipline Specific Elective

DSE	Paper I	Paper II	Practical Paper
DSE 4	Drug Design	Pharmaceutical Biotechnology	Practical Paper
DSE 5	Developmental Biology	Aquaculture Biotechnology	Practical Paper
DSE 6	Virology	Toxicology	Practical Paper
DSE 7	Nano-biotechnology	Food Biotechnology	Practical Paper
DSE 8	Project Dissertation Course		. –

Skill enhancement courses (SEC) (any Four):

Student has choice to study any four courses from respective semester subject to the availability of particular course at respective college

Semester	SEC	Course Title	SEC	Course Title
III	SEC I	Algal and Mushroom Cultivation	SEC II	Lignocellulosic Biomass Conversion
				Techniques
IV	SEC III	Animal and Plant Tissue Culture Techniques	SEC IV	Bioanalytical Instrumentation
V	SEC V	Biostatistics	SEC VI	Bioethics and Biosafety
VI	SEC VII	Intellectual Property Rights	SEC VIII	Business Management

Scheme for F. Y. B. Sc. (Biotechnology)

Semester		CORE COUR	SE		Ability Enhand Cours	ement Con se (AECC)	ipulsory
	DSC		Credits	Lectures		Credits	Lectures
Ι	DSC - 1 A:	Paper I	2	30	AECC 1:	2	60
	Core Course I:	Paper II	2	30	English/Marathi/C		
	Biotechnology	Practical Paper	2	60	ommunication		
	DSC - 2 A:	Paper I	2	30			
	Core Course II	Paper II	2	30			
		Practical Paper	2	60			
	DSC - 3 A:	Paper I	2	30			
	Core Course III	Paper II	2	30			
		Practical Paper	2	60			
	DSC - 4 A:	Paper I	2	30			
	Core Course IV	Paper II	2	30			
		Practical Paper	2	60			
II	DSC - 1 B	Paper I	2	30	AECC 2:	2	60
	Core Course I:	Paper II	2	30	Environmental		
	Biotechnology	Practical Paper	2	60	Science		
	DSC-2B	Paper I	2	30			
	Core Course II	Paper II	2	30			
		Practical Paper	2	60			
	DSC- 3 B:	Paper I	2	30			
	Core Course III	Paper II	2	30			
		Practical Paper	2	60			
	DSC- 4 B:	Paper I	2	30			
	Core Course IV	Paper II	2	30			
		Practical Paper	2	60		1	

Student has choice to study three subsidiary subjects from **DSC 2**, **DSC 3** and **DSE 4** among Chemistry/ Botany/ Zoology /Geography during I, II, III and IV semester; subject to availability of course at respective college. Duration of Lecture: 30 Lectures of 60 minutes or 36 Lectures of 50 min. Each theory and practical course has to be completed in 30 and 60 lectures, respectively of 60 min duration

Each theory and practical course will be of 100 marks comprising of 40 marks internal (20 marks of 2 internal examinations) and 60 marks external examination.

- **Theory examination** (60 marks) will be of three hours duration for each theory course. There shall be 5 questions each carrying equal marks (12 marks each). The pattern of question papers shall be:
 - Question 1 (12 marks): 9 sub-questions, each of 2 marks; answerable in 2 -3 line and based on entire syllabus, attempt any 6 out of 9 questions.
 - Question 2, 3 and 4 (12 marks each): based from Unit I, II, and III, respectively, each question has 3 sub-questions of 6 marks each and answer only 2 sub-questions from each Q2, Q3, and Q4 in brief.
 - Question 5 (12 marks): answer only 3 out of 5 in brief, based from all 3 units, Each 4 marks.
- Internal examination (40 marks each semester): Internal assessment of the student by respective teacher will be comprehensive and continuous, based on written test. The written test shall comprise of both objective and subjective type questions.
- Practical Examination: Practical examination shall be conducted by the respective college at the end of the semester. Practical examination will be of minimum 5 6 hours duration and shall be conducted as per schedule (10 am to 5 pm on schedule date or can be scheduled 10 am -1pm/2 5 pm for 2 consecutive days) in case of microbiology practicals where incubation condition, allied aspect are essential. There shall be 5 marks for laboratory log book and well written journal, 10 marks for viva-voce and minimum three experiments (major and minor). Certified journal is compulsory to appear for practical examination. There shall be one expert and two examiners (external and internal) per batch for the practical examination

Equivalence for F.Y. B.Sc. (Biotechnology) is furnished in the following table:

Old Syllabus (w. e. f. June 2015- 2016)	New Syllabus (w. e. f. June 2018 -19) CBCS
(Semester pattern 60:40)	pattern (Semester pattern 60:40)
BT-111 Foundations of Biotechnology	BT-101 Cell Biology
BT-112 Methods in Biotechnology	BT-102 Biochemical Tools
BT-121 Biomolecules	BT-201 Biomolecules
BT-122 Microbial Techniques	BT-202 Basic Microbiology

F. Y. B. Sc. (Biotechnology) Semester – I

Semester	CC -A	Paper	Paper I	Paper	Paper II	Paper	Biotechnology
	and B	code	_	code	_	code	Practical Paper
Ι	CC A I	BT101	Cell Biology	BT102	Cell Physiology	BT103	Practical paper I
Π	CC A II	BT201	Biomolecules	BT202	Basic Microbiology	BT203	Practical paper II

CC A I: Paper I BT101: Cell Biology (Theory)

Total Hours: 30

Unit	Title	Particular Topic	Lectures					
Course		echnology and its various applications in various fields of	human life					
objective	and to apprise about basic concepts in cell biology							
Learning	Students are expe							
outcome		nowledge pertinent to cell as unit, cell organelles and its ar	chitecture					
		ictural and functional details of cell related to the scope of biotechnology						
		ow science works						
		biotechnology and its application in various fields						
Ι	Introduction	 Introduction to biotechnology and historic 	08					
	to	perspectives						
	biotechnology	 Scope of biotechnology in Agriculture, Industry, 						
		Medical and Environment						
		 Introduction to Genetic engineering, 						
		Bioinformatics and Nano-biotechnology						
		• Applications of Biotechnology: Agriculture,						
		Pharmaceutical, Environment, Fermentation.						
		Commercial opportunities in Biotechnology						
		sector at national and international level						
		 Safety and ethics in Biotechnology 						
Unit II	Cell Biology	Cell: Introduction and classification of	12					
0 1110 11	Con Diology	organisms by cell structure, Prokaryotic and						
		Eukaryotic cell, cytosol, compartmentalization						
		of eukaryotic cells, cell fractionation.						
		• Cell membrane and permeability: Chemical						
		components of biological membranes,						
		organization and Fluid Mosaic Model, cell						
		recognition and membrane transport.						
		• Membrane Vascular system, cytoskeleton and						
		cell motility: Structure and function of						
		microtubules, Microfilaments,						
T T 0, TTT			10					
Unit III	Cell	 Cell disruption and methods of cell disruption 	10					
	organelles	• Endoplasmic reticulum: Structure, function						
		including role in protein segregation						

	• Golgi complex: Structure, biogenesis and
	functions including role in protein secretion.
	Lysosomes: Vacuoles and micro bodies:
	Structure and functions
	 Ribosomes: structure of prokaryotic and
	eukaryotic, and functional role in protein
	synthesis.
	 Mitochondria: Structure and function,
	Mitochondrial DNA, biogenesis.
	 Chloroplasts: Structure and function,
	Chloroplast DNA, biogenesis
	Nucleus: Structure and function, chromosomes
	and their structure, euchromatin and
	heterochromatin
Suggested	1. Karp, G. (2010) Cell and Molecular Biology:
readings	Concepts and Experiments, 6 th Edition, John Wiley
	& Sons. Inc.
	2. De Robertis, E.D.P. and De Robertis, E.M.F. (2006)
	Cell and Molecular Biology, 8th edition, Lippincott
	Williams and Wilkins, Philadelphia.
	3. Cooper, G.M. and Hausman, R.E. (2009) The Cell:
	A Molecular Approach, 5th edition, ASM Press &
	Sunderland, Washington, D.C.; Sinauer Associates,
	MA.
	4. Becker, W.M., Kleinsmith, L.J., Hardin, J. and
	Bertoni, G.P. (2009) The World of the Cell, 7th
	edition, Pearson Benjamin Cummings Publishing,
	San Francisco.

CC A I: Paper I BT102: Biochemical Tools (Theory)

Total Hours: 30

Unit	Title	Topic Particular	Lectures					
Course objective	To complemen studies	t the students with routine biochemical tools adopted in bio	technology					
Learning	Students are ex	spected to be able to:						
outcome	handling to	ate theory and practical skills in different types of microscop echniques and staining procedures						
		d the fundamental biochemical concepts and familiarize wit uffer and reactions	h standard					
		he concepts of pH and its biological significance, buffers, I	Ienderson-					
		h equation, biological buffer systems and their importance						
	Know the	terms and terminologies related to basic biochemical aspects	-					
Ι	Biochemical	• Structure of atoms and molecules, and chemical	10					
	concept	bonds (covalent, ionic, Hydrogen, van der waal's,						
		hydrophobic						
	 Overview of major elements involved in formation 							
		of biomolecules: C,N,P,S,O,H						

		-	Water shaming a surresition interesting '1	
		-	Water: chemical composition, interactions with	
			biomolecules, solvent properties	
		•	Concept and type of biochemical reactions,	
			mechanism of reactions	
		•	Solution, and type of solutions (homo- and hetero-	
			geneous), standard solutions	
		•	Concept of pH, pOH, buffer system, type of buffer	
			solutions, buffer system for blood, biological	
			buffers, weak acid and weak base, dissociation	
			constant of weak acid and base, <i>pKa</i> , pH and pH	
			scale, titration curve, Henderson-Hasselbatch	
			equation and buffers used in chemical reactions	
			Titration, types of titration: acid base titration,	
			precipitation titration, redox titration,	
			complexometric titration	
		-	Enzymes concept, active site, Transition state	
			theory, classification and Coenzymes, applications	
Unit II	Microscopy		Concept of microscopy: Resolution,	10
	wherescopy		magnification, Numerical aperture, and	10
			illumination systems in microscope	
			Lens aberrations and its correction system	
		•	Light microscope: principle, ray diagram,	
			components, working and applications of Bright	
			field, dark field and phase contrast microscope	
		•	Electron microscope: Principle, ray diagram,	
			construction, working and applications of TEM	
			and SEM	
		•	Sample preparation for electron microscope and	
			ultramicrotomy	
Unit III	Stains and	-	Concept of dyes and biological stains	10
	staining	•	Type of stains, mordents, accentuators, fixatives	
	techniques	•	Staining techniques: Simple (Monochromatic, and	
			Negative), differential (Gram's and acid fast	
			staining), Lactophenol cotton blue staining for	
			fungi,	
		-	Histochemical techniques: plant and animal cell	
			staining, Haematoxylin staining, Periodate staining	
			(PAS), Thionyl staining and Fluorescence staining	
	Suggested	1.		
	readings		Principles and Practices, Universities Press Pvt.	
			Ltd., Hyderabad	
		2.	Wiley, JM, Sherwood, LM and Woolverton, CJ. (2013)	
			Prescott's Microbiology. 9 th Edition. McGraw Hill	
			International, New York	
L	1	i	,	

3.	Frobisher M. Hinsdill, Crabtree and Goodheart (1974).	
	Fundamentals of Microbiology, 9th edition, WB	
	Saunder's Co. USA.	
4.	Madigan MT, Martinko JM, Dunlap PV and Clark DP.	
	(2014). Brock Biology of Microorganisms, 14th edition,	
	Pearson International Edition, New Delhi	
5.	Pelczar MJ, Chan ECS and Krieg NR. (1993).	
	Microbiology. 5 th edition. McGraw Hill Book	
	Company, New York	
6.	Tortora, Funke and Case (2010). Microbiology, 10 th	
	edition, Brenjamin Cummings Inc, California.	
7.	Ulhas Patil, JS Kulkarni, AB Chaudhari and SB	
	Chincholkar (2016). Foundations in Microbiology 9 th	
	edition, Nirali Prakashan, Pune	
8.	Modi, H. A. (2014) Elementary Microbiology, Vol. 1	
	and 2, Akshar Prakashan, Ahmedabad	

CC A I: Practical Paper I BT103: Practical Paper I (Practical)

Total Hours: 60

Sr., no.	Title of the Practical	Hours		
Course	To acquaint students with instruments operation, safety aspects and train t	he students		
objective	on the practical components of the theory courses			
Learning	Students are expected to:			
outcome	 Demonstrate practical skills in microscopy, laboratory equipment and their 			
	 handling techniques and staining procedures Know various stages of cell division and also understand the sign 	ificance of		
	each event during meiosis and mitosis	incance of		
	 Perform routine tasks safely and effectively 			
1	• First aid, Hazardous Chemicals, Antidotes to hazardous and toxic	4		
	chemicals, Safety measures in laboratory,			
2	• Handling of instruments: Autoclave, Laminar air flow,	4		
	Centrifuges, spectrophotometer, and			
3	 Use and care of compound microscope 	4		
4	Calibration of Weighing balance, Micropipettes and Laboratory	4		
	glass wares			
5.	• Principles of Colorimetry: (i) Verification of Beer's law,	4		
	estimation of protein and (ii) study relation between absorbance			
	and % transmission			
6.	• Study the structure of plant cell through temporary mounts of	4		
	onion/any plant of choice			
7.	• Study the cell division in onion root tip/ insect gonads (temporary	4		
	and permanent mounts			
8.	 Monochrome and Negative Staining of bacterial cell 	4		
9.	Gram's staining of bacteria	4		
10	Preparation of buffer solution	4		
11.	 Preparation of 1N solution of HCl and NaOH 	4		

12	Periodate staining	4
13	 Lactophenol Blue staining of Fungi 	4
14	 Demonstration study of plastid types using microscope 	4
15	 Demonstration of use of pH meter 	4
Suggested readings	 Atlas, R. M. (1997) Principles of Microbiology, 2nd editio WM.T.Brown Publishers, Dubuque, USA. Cappucino J and Sherman N. (2010) Microbiology: A Laborato Manual, 9th edition, Pearson Education Limited, New Delhi Parija S.C. (2005) Text Book of Practical Microbiology, edition, Ahuja Publishing House, New Delhi. Dubey RC and Maheshwari DK (2004) Practical Microbiolog 1st edition, S. Chand and Co., Delhi. Harley, J. P. and Prescott L. M. (2002) Laboratory Exercises Microbiology, 5th edition, The McGraw-Hill Co., New York Benson H. (2001) Microbiological Applications Lab Manual, 8 edition, The McGraw-Hill Companies, New York 	ry 1 st y, in 3 th
	 Aneja K.R. (1996) Experiments in Microbiology, 3rd editio Wishwa Prakashan, New Delhi. 	n,

Note: Mandatory to perform at least 12 - 13 practicals

F. Y. B. Sc. (Biotechnology) SEMESTER – II

CC A I: Paper II BT 201: Biomolecules (Theory)

Total Hours: 30

Unit	Title	Topic Particular	Lectures
Course objective	To complem	ent the students with the basic concept about biomolecules	5
Learning outcome	nucleic biomolec	of major biomolecules –carbohydrates, lipids, proteins, a acids, classification, structure, function of the above	
Ι	Carbohyd- -rates	 Definition, classification (glyceraldehydes, Simple Aldose, Simple Ketoses, D-glucose, Conformation of D-glucose) and biological functions of carbohydrates. D and L isomers, dextrorotatory and levorotatory, reducing sugar and mutarotation Structure, Function and properties of Monosaccharides, Disaccharides and Polysaccharides, Homo- and Hetero- Polysaccharides, Mucopolysaccharides, Structure and biological significance of lactose, sucrose and maltose Polysaccharides: Homo- Cellulose, Glycogen and Starch; Plant lignocellulose and Bacterial peptidoglycan, Glycoprotein's and their biological functions 	10

Unit II	Lipids	 Classification, nomenclature and properties of fatty acids, essential fatty acids. Definition, classification and biological functions of simple, compound and derived lipids Structure and biological significance of phospholipid and cholesterol, Saturated (palmetic acid), Non-saturated (oleic acid) Use as signal, cofactor, pigment 	08
Unit III	Proteins and nucleic acid	 Amino acids: Definition, physical and chemical properties, classification Protein : Structure; primary, secondary, tertiary and quaternary, Bonds stabilizing structural conformation, Denaturation and renaturation of proteins, Different types of proteins in the living system, Protein sequencing by Sanger, Edman's method Structural Components of Nucleic acids: Nucleosides and Nucleotides, purines and pyrimidines DNA: Structure (Watson and Crick Model), Chargaff's Rule, forms of DNA RNA: Structure and Significance of: mRNA, tRNA and rRNA, hnRNA. 	12
	Suggested readings	 Berg, J. M., Tymoczko, J. L. and Stryer, L. (2006) Biochemistry, VI Edition, W.H Freeman and Co., Buchanan, B., Gruissem, W. and Jones, R. (2000) Biochemistry and Molecular Biology of Plants, American Society of Plant Biologists. Nelson, D.L., Cox, M.M. (2004) Lehningers' Principles of Biochemistry, 4th Edition, WH Freeman and Company, New York, USA. Hopkins, W.G. and Huner, P.A. (2008) Introduction to Plant Physiology, John Wiley and Sons, Salisbury, F.B. and Ross, C.W. (1991) Plant Physiology, Wadsworth Publishing Co. Ltd., 	

CC A I: Paper II BT 202: Basic Microbiology B (Theory)

Credits: 2

Total Hours: 30

-nisms

Unit	Title	Topic Particular	Lectures
Course	To complement	nt the students with fundamental concepts in Microbiology	
objective	<u><u> </u></u>		
Learning	Students are e	•	
outcome		nd the basic microbial structure and study the co	
		istics of prokaryotes and eukaryotes and familiarize the es and differences among various microbes	structural
		rious Culture media and their applications and also understa	nd various
		and chemical means of sterilization	
		neral bacteriology and microbial techniques for isolation of pu	re cultures
	-	a, fungi and algae	
	Learn as	eptic techniques and be able to perform routine culture hand	dling tasks
	safely and	l effectively	
	 Know the 	e various Physical and Chemical growth requirements of bacter	ria and get
	equipped	with various methods of bacterial growth measurement.	
I	Microbial	 Concept of microorganisms 	10
	cells	• Comparative account of prokaryotic and eukaryotic	
		cells,	
		 Morphology and cell structure of Bacteria, virus, 	
		Algae, Fungi, and Protozoa	
		Classification of microorganisms: Whittaker's five	
		kingdom system of classification, Microbial	
		taxonomy, Microbial phylogeny and current	
		classification of bacteria.	
		 Morphological features of Bacteriophage 	
Unit II	Growth	 Concept of Culture: Pure culture, axenic culture, 	10
Omt II	and	mixed culture	10
	cultivation		
	of microbes	 Media and media ingredients (water, peptone, malt 	
		extract, meat extract, yeast extract, trace elements,	
		growth factor)	
		 Types of media: complex, synthetic, natural, 	
		selective, differential, enriched media	
		 Isolation methods: Streak Plate, Spread Plate, Pour 	
		Plate, stab inoculation	
		 Cultivation of fungi: Slide culture technique 	
		• Microbial growth: Growth curve, Generation time,	
		synchronous batch and continuous culture,	
		 Measurement of growth and factors affecting 	
	~ -	growth of bacteria	
Unit III	Control of	• Concept of Sterilization, disinfectant, antiseptic,	12
	microorga-	sanitizer, TDR & TDT.	

• Physical methods (Heat, radiation, filtration) and chemical (Ethylene oxide, formaldehyde) methods of sterilization. Biological indicators of sterilization

	 Definition of Disinfection, characteristics of ideal
	disinfectant, Mode of action of alcohol, phenolic
	compounds, halogen, heavy metals, H ₂ O ₂ , detergent
Suggestee	d 1. Alexopoulos, CJ, Mims CW, and Blackwell, M.
readings	(1996) Introductory Mycology, 4th edition, John
	and Sons, Inc.,
	2. Jay, JM, Loessner, MJ and Golden, DA. (2005)
	Modern Food Microbiology, 7th edition, CBS
	Publishers and Distributors, New Delhi
	3. Kumar, HD. (1990) Introductory Phycology, 2 nd
	edition, Affiliated East Western Press,
	4. Madigan, MT, Martinko, JM and Parker, J. (2009)
	Brock Biology of Microorganisms, 12th edition,
	Pearson/Benjamin Cummings,
	5. Pelczar, MJ, Chan ECS and Krieg NR. (1993).
	Microbiology, 5 th edition, McGraw Hill Book
	Company,
	6. Stanier, RY, Ingraham, JL, Wheelis, ML, and
	Painter PR. (2005) General Microbiology, 5th
	edition, McMillan,
	7. Tortora, GJ, Funke, BR, and Case, CL. (2008)
	Microbiology: An Introduction, 9th edition,
	Pearson Education.
	8. Willey, JM, Sherwood, LM, and Woolverton, CJ.
	(2008) Prescott, Harley and Klein's Microbiology,
	7th edition, McGraw Hill Higher Education,
	,

CC A I: Practical Paper II BT 203: Practical Paper II (Practical)

Total Hours: 60

Sr. no.	Title of the Practical	Hours
Course objective Learning	To complement the students with basic biochemistry, cultivation technic microbes and familiarize with algae, fungi	ques for
outcome	 Students are expected to: Demonstrate theory and practical skills in microscopy and their handling techniques and staining procedures Understand the basic microbial practices and study the comparative characteristics of prokaryotes and eukaryotes Prepare and view specimens using microscopy (bright field microscope). Aware and train in aseptic handling of microbial specimens. Practice safe microbiology, using appropriate protective and emergency procedures. 	
1.	• Determination of λ max by using a suitable dye	4
2.	 Qualitative test for carbohydrates and lipids 	4
3.	 Qualitative test for amino acids and proteins 	4

4.	 Extraction of Starch from Potatoes 	4
5.	 Extraction of Ovalbumin from Egg 	
6.	 Extraction of Lact-albumin from Milk 	
7.	 Measurement of bacterial cell size using ocular micrometer and stage micrometer 	4
8.	 Study morphological characteristics of bacteria using microscope 	4
9.	 Preparation of culture media for bacterial cultivation (Nutrient broth and nutrient agar/ MacConkeys broth and MacConkes agar 	4
10	 Study of colony morphological characteristics of bacteria 	4
11.	 Isolation of bacteria by streak plate method from water/soil sample 	
12.	 Isolation of bacteria by spread plate method from water/soil sample 	4
13.	 Study cultivation of fungi by slide culture technique 	4
14.	 Study of Algae with temporary mounts and permanent slides (e, g. Spirogyra /Anabena / Nostoc) 	4
15.	 Demonstrative preparation of paper model of DNA and web-based online observation of 3-D structure of protein 	4
Suggested readings	 Atlas, RM. (1997) Principles of Microbiology, 2nd edition, WM.T.Brown Publishers, Cappucino, J. and Sherman, N. (2010) Microbiology: A Laboratory Manual. 9th edition. Pearson Education Limited, Parija, S.C. (2005) Text Book of Practical Microbiology. 1st edition, Ahuja Publishing House, New Delhi. Dubey, RC and Maheshwari, DK (2004) Practical Microbiology, 1st edition, S. Chand and Co., Delhi. Harley, J. P. and Prescott, L.M. (2002) Laboratory Exercises in Microbiology 5th edition, The McGraw-Hill Companies, Benson, H. (2001) Microbiological Applications Lab Manual, 8th edition, The McGraw-Hill Companies, 	

Note: Mandatory to perform at least 12 -13 practicals during the semester

Skills acquired and Job prospectus for the Biotechnology students

Biotechnology, being part of Life Science, has established as advanced interdisciplinary applied science. The interdisciplinary networking potential of biotechnology has given it a separate status in fundamental research as well as in modern industrial enterprise. Global and local focus has slowly shifted current knowledge based system to technology driven development and application in life sciences. In the milieu of research and industrialization for economic development and social renaissance, biotechnology emerged out as a major tool to work.

The interdisciplinary nature of biotechnology integrates living systems including animal, plant and microbes and studies from (i) molecular biology to cell biology, (ii) biochemistry to biophysics, (iii) genetic engineering to stem cell research, (iv) bioinformatics to genomicsproteomics, (v) environmental biology to biodiversity, (vi) microbiology to bioprocess engineering, (vii) bioremediation to material transformation and so on. The application of the studies on cell bioprocesses is covered with the help of technology. Green, blue and white revolution was possible due to intrinsic understanding of biotechnology.

The integration of various courses in the program is aimed to develop proficiency in the theory as well as practical experiments, common equipment, laboratory, along with the collection and interpretation and presentation of scientific data in proper manner. Beside this, the students will be equipped with knowledge in the newer areas of biotechnology and its application in medical science, agriculture, industry, proteomics, genomics, metabolomics, bioinformatics, nano-biotechnology etc. This will create awareness about biotechnology. At the end of the course, the students are expected to have good working knowledge in the field of Biotechnology. Students will surely have an urge to continue higher studies in Biotechnology and contribute significantly in the development.

Biotechnologists are always in demand as an efficient work force in fundamental research and industries. Education and research sectors require such interdisciplinary trained workforce to develop future generations of science leaders. Career opportunities for graduate students are created and expanding at the biotechnology parks and in manufacturing industries, teaching, research institutes and IT industry.